-- 作者:c408133217
-- 发布时间:3/9/2012 1:58:00 PM
-- weka functional tree算法的输出结果不明白!!
functional tree和logistic model tree的inner nodes不是一个回归公式吗,为什么weka的输出结果是两个互为负的回归公式。而且最后的leaves node后class1和class2是什么标准分? 下面一个结果的示例,两种模型的weka输出结果类似,所以只放上functional tree的输出结果。 ---------------分割线------------------------------- === Run information === Scheme:weka.classifiers.trees.FT -I 15 -F 0 -M 15 -W 0.0 Relation: training-weka.filters.unsupervised.attribute.Remove-R1-weka.filters.unsupervised.attribute.Remove-R3-10,34-1171,1228-1302-weka.filters.unsupervised.attribute.Remove-R22,36-38,40,45,49-50,59,62,66-77,79 Instances:204 Attributes:59 MW AMW nAT nSK nBT nBO nBM SCBO nCIC nCIR RBN RBF nDB nTB nAB nH nC nN nO nP nS nCL nBR nX nCp nCs nCt nCq nCrH2 nCrHR nCrR2 nCaH nCaR nCconjR nNCO nCOOHPh nCOOR nCOORPh nCONHR nCONR2 nOCON nCOXPh nCO nCONN nNH2 nNH2Ph nNHR nNHRPh nNR2 nNR2Ph nCN nNO2Ph nOH nOHPh nOHp nPhX nHDon nHAcc judgement Test mode:10-fold cross-validation === Classifier model (full training set) === FT tree ------------------ N0#1 <= 0.538508 | N0#2 <= 0.188679: FT_1:15/45 (76) | N0#2 > 0.188679: FT_2:15/45 (32) N0#1 > 0.538508: FT_3:15/30 (96) Number of Leaves : 3 Size of the Tree : 5 FT_N0#1: Class 0 : -1.45 + [MW] * 0 + [nCIR] * 0.1 + [nDB] * -0.14 + [nN] * 0.5 + [nS] * 0.36 + [nCp] * 0.17 + [nCrH2] * 0.07 + [nCrHR] * 0.21 + [nCrR2] * 0.43 + [nCaR] * 0.07 + [nCOORPh] * -0.58 + [nNH2Ph] * 0.47 + [nNR2] * -0.28 + [nPhX] * 0.28 Class 1 : 1.45 + [MW] * 0 + [nCIR] * -0.1 + [nDB] * 0.14 + [nN] * -0.5 + [nS] * -0.36 + [nCp] * -0.17 + [nCrH2] * -0.07 + [nCrHR] * -0.21 + [nCrR2] * -0.43 + [nCaR] * -0.07 + [nCOORPh] * 0.58 + [nNH2Ph] * -0.47 + [nNR2] * 0.28 + [nPhX] * -0.28 FT_N0#2: Class 0 : -2.22 + [MW] * 0.01 + [nCIR] * 0.1 + [nDB] * -0.14 + [nN] * 0.5 + [nS] * 0.36 + [nBR] * 1.52 + [nCp] * 0.17 + [nCq] * 1.56 + [nCrH2] * 0.18 + [nCrHR] * 0.56 + [nCrR2] * 1.95 + [nCaR] * 0.07 + [nCOOR] * -0.93 + [nCOORPh] * -0.58 + [nCONHR] * -0.54 + [nCONR2] * 1.52 + [nCOXPh] * -0.74 + [nNH2] * -0.77 + [nNH2Ph] * 0.47 + [nNR2] * -0.28 + [nNR2Ph] * 1.31 + [nPhX] * 0.8 + [nHAcc] * -0.13 Class 1 : 2.22 + [MW] * -0.01 + [nCIR] * -0.1 + [nDB] * 0.14 + [nN] * -0.5 + [nS] * -0.36 + [nBR] * -1.52 + [nCp] * -0.17 + [nCq] * -1.56 + [nCrH2] * -0.18 + [nCrHR] * -0.56 + [nCrR2] * -1.95 + [nCaR] * -0.07 + [nCOOR] * 0.93 + [nCOORPh] * 0.58 + [nCONHR] * 0.54 + [nCONR2] * -1.52 + [nCOXPh] * 0.74 + [nNH2] * 0.77 + [nNH2Ph] * -0.47 + [nNR2] * 0.28 + [nNR2Ph] * -1.31 + [nPhX] * -0.8 + [nHAcc] * 0.13 FT_1: Class 0 : -1.92 + [MW] * 0.01 + [nBT] * -0.06 + [nCIR] * 0.1 + [RBF] * 4.33 + [nDB] * -0.45 + [nH] * -0.27 + [nN] * 0.5 + [nS] * 2.88 + [nBR] * 1.52 + [nCp] * 1.08 + [nCq] * 1.56 + [nCrH2] * 0.18 + [nCrHR] * 0.56 + [nCrR2] * 1.95 + [nCaR] * 0.07 + [nCOOHPh] * 1.16 + [nCOOR] * -0.93 + [nCOORPh] * -0.58 + [nCONHR] * -0.54 + [nCONR2] * 1.52 + [nCOXPh] * -0.74 + [nNH2] * -0.77 + [nNH2Ph] * 0.47 + [nNR2] * -0.28 + [nNR2Ph] * 1.31 + [nNO2Ph] * 1.8 + [nPhX] * 0.8 + [nHDon] * -1.19 + [nHAcc] * -0.13 Class 1 : 1.92 + [MW] * -0.01 + [nBT] * 0.06 + [nCIR] * -0.1 + [RBF] * -4.33 + [nDB] * 0.45 + [nH] * 0.27 + [nN] * -0.5 + [nS] * -2.88 + [nBR] * -1.52 + [nCp] * -1.08 + [nCq] * -1.56 + [nCrH2] * -0.18 + [nCrHR] * -0.56 + [nCrR2] * -1.95 + [nCaR] * -0.07 + [nCOOHPh] * -1.16 + [nCOOR] * 0.93 + [nCOORPh] * 0.58 + [nCONHR] * 0.54 + [nCONR2] * -1.52 + [nCOXPh] * 0.74 + [nNH2] * 0.77 + [nNH2Ph] * -0.47 + [nNR2] * 0.28 + [nNR2Ph] * -1.31 + [nNO2Ph] * -1.8 + [nPhX] * -0.8 + [nHDon] * 1.19 + [nHAcc] * 0.13 FT_2: Class 0 : -0.83 + [MW] * 0.01 + [nBT] * -0.03 + [nCIR] * -0.03 + [nDB] * -0.14 + [nN] * -0.65 + [nS] * 0.36 + [nBR] * 1.52 + [nCp] * 0.17 + [nCq] * 2.29 + [nCrH2] * 0.18 + [nCrHR] * 0.56 + [nCrR2] * 1.95 + [nCaH] * 0.05 + [nCaR] * 0.07 + [nCconjR] * 0.7 + [nCOOHPh] * -0.64 + [nCOOR] * -2.8 + [nCOORPh] * -0.58 + [nCONHR] * -0.54 + [nCONR2] * 1.52 + [nCOXPh] * -2.31 + [nCO] * 0.36 + [nNH2] * -0.77 + [nNH2Ph] * 0.47 + [nNHR] * 1.57 + [nNR2] * -0.28 + [nNR2Ph] * 2 + [nOH] * -1.16 + [nPhX] * 0.8 + [nHAcc] * -0.13 Class 1 : 0.83 + [MW] * -0.01 + [nBT] * 0.03 + [nCIR] * 0.03 + [nDB] * 0.14 + [nN] * 0.65 + [nS] * -0.36 + [nBR] * -1.52 + [nCp] * -0.17 + [nCq] * -2.29 + [nCrH2] * -0.18 + [nCrHR] * -0.56 + [nCrR2] * -1.95 + [nCaH] * -0.05 + [nCaR] * -0.07 + [nCconjR] * -0.7 + [nCOOHPh] * 0.64 + [nCOOR] * 2.8 + [nCOORPh] * 0.58 + [nCONHR] * 0.54 + [nCONR2] * -1.52 + [nCOXPh] * 2.31 + [nCO] * -0.36 + [nNH2] * 0.77 + [nNH2Ph] * -0.47 + [nNHR] * -1.57 + [nNR2] * 0.28 + [nNR2Ph] * -2 + [nOH] * 1.16 + [nPhX] * -0.8 + [nHAcc] * 0.13 FT_3: Class 0 : 0.02 + [MW] * 0 + [nBT] * -0.02 + [nCIR] * 0.1 + [RBF] * -1.76 + [nDB] * 0.05 + [nN] * 0.5 + [nP] * -0.89 + [nS] * 1.28 + [nCL] * -0.16 + [nCp] * 0.17 + [nCs] * 0.03 + [nCrH2] * 0.07 + [nCrHR] * 0.21 + [nCrR2] * 0.43 + [nCaR] * 0.07 + [nCOORPh] * -0.58 + [nOCON] * -0.89 + [nNH2Ph] * 0.06 + [nNR2] * -0.78 + [nNO2Ph] * 0.34 + [nOHPh] * -0.31 + [nPhX] * 0.28 Class 1 : -0.02 + [MW] * 0 + [nBT] * 0.02 + [nCIR] * -0.1 + [RBF] * 1.76 + [nDB] * -0.05 + [nN] * -0.5 + [nP] * 0.89 + [nS] * -1.28 + [nCL] * 0.16 + [nCp] * -0.17 + [nCs] * -0.03 + [nCrH2] * -0.07 + [nCrHR] * -0.21 + [nCrR2] * -0.43 + [nCaR] * -0.07 + [nCOORPh] * 0.58 + [nOCON] * 0.89 + [nNH2Ph] * -0.06 + [nNR2] * 0.78 + [nNO2Ph] * -0.34 + [nOHPh] * 0.31 + [nPhX] * -0.28 Time taken to build model: 0.44seconds === Stratified cross-validation === === Summary === Correctly Classified Instances 157 76.9608 % Incorrectly Classified Instances 47 23.0392 % Kappa statistic 0.5389 Mean absolute error 0.2359 Root mean squared error 0.4548 Relative absolute error 47.3282 % Root relative squared error 91.1099 % Total Number of Instances 204 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure ROC Area Class 0.759 0.219 0.796 0.759 0.777 0.771 N 0.781 0.241 0.743 0.781 0.761 0.771 R Weighted Avg. 0.77 0.229 0.771 0.77 0.77 0.771 === Confusion Matrix === a b <-- classified as 82 26 | a = N 21 75 | b = R
|